Differential Diagnosis of Adolescent Conditions

Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pathology</th>
<th>Population affected</th>
<th>Mechanism of onset</th>
<th>Clinical Features</th>
<th>Radiological Features</th>
<th>Differential Diagnosis</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaphoid fractures¹</td>
<td>Fracture generally at waist or distal pole of scaphoid</td>
<td>13 to 15 years</td>
<td>FOOSH</td>
<td>Snuffbox tenderness</td>
<td>Radiographs, standard PA, lateral views also a posteroanterior view in ulnar deviation. Non-displaced fractures may be undetectable on plain radiographs so MRI may be required</td>
<td>Scapholunate ligament injuries</td>
<td>Non-operatively with a thumb spica cast. Displaced scaphoid fractures are treated with an ORIF</td>
</tr>
<tr>
<td>Distal Radius Fractures¹</td>
<td>Fracture</td>
<td>Inline skaters or snowboarders</td>
<td>FOOSH</td>
<td>Swelling Tenderness to palpate over distal radius Limited wrist movement</td>
<td>X-rays are required every 2 weeks to ensure reduction is maintained</td>
<td>Scaphoid fracture Triangular fibrocartilage complex (TFCC) tear.</td>
<td>Immobilisation for up to 6 weeks in a cast Displaced distal radius fractures are treated with an ORIF</td>
</tr>
<tr>
<td>Scapholunate ligament injuries¹</td>
<td>Tear or sprain of scapholunate ligament/Scapholunate dissociation</td>
<td>Physically active individuals</td>
<td>FOOSH, High energy trauma</td>
<td>Persistent wrist pain Tenderness 2cm distal to Lister’s tubercle on the radial side of the lunate Watson’s ligament test</td>
<td>Stress radiographs, MRI, and arthroscopy can aid in diagnosis</td>
<td>Scaphoid fracture Other carpal ligament damage</td>
<td>Conservative treatment: immobilisation in a brace Partial ligament injuries can be debrided arthroscopically Complete tears can be diagnosed arthroscopically and treated with open repair and pinning.</td>
</tr>
<tr>
<td>Triangular fibrocartilage injuries¹</td>
<td>Sprain or tear of the triangular fibrocartilage discus, the radioulnar ligaments and the ulnocarpal ligaments</td>
<td>Physically active individuals</td>
<td>A twisting injury to the wrist</td>
<td>Ulnar-sided wrist pain and swelling</td>
<td>MRI with or without intraarticular contrast, or arthroscopy</td>
<td>Carpal ligament damage Distal ulnar fracture Dorsal carpal impingement</td>
<td>-Hand therapy -Splinting or casting can be used -arthroscopic repair in large tears</td>
</tr>
<tr>
<td>Gymnast wrist¹</td>
<td>Growth disturbance in the distal radius (can lead to distal radius deformity or distal ulna overgrowth)</td>
<td>Growing gymnasts</td>
<td>Repetitive axial loading of the wrist causes cumulative injury to the distal radius physis</td>
<td>Vague, chronic, activity-related wrist pain</td>
<td>Radiographic physeal widening or irregularity indicates physeal damage/ dysfunction</td>
<td>Intersection syndrome TFCC injury Acute physeal fracture</td>
<td>Epiphysiodesis or ulnar shortening osteotomy to prevent or treat distal ulna overgrowth</td>
</tr>
</tbody>
</table>

¹FOOSH: Fall on outstretched hand
<table>
<thead>
<tr>
<th>Condition</th>
<th>Pathology</th>
<th>Population affected</th>
<th>Mechanism of onset</th>
<th>Clinical Features</th>
<th>Radiological Features</th>
<th>Differential Diagnosis</th>
<th>Management</th>
</tr>
</thead>
</table>
| Dorsal Carpal Impingement¹ | Dorsal radiocarpal/ synovial impingement| Those repeatedly loading wrist extension i.e. push-ups and bench-pressing | Weight-bearing on a hyperextended wrist | • Dorsal wrist pain
• Pain with end of range wrist extension | • Plain x-rays often normal
• TFCC injury
• Intersection syndrome
• Gymnast wrist | • Elimination or modification of activities to prevent wrist hyperextension
• If conservative treatment fails, arthroscopic debridement of the dorsal synovitis along with excision of the articular branch of the posterior interosseous nerve may be necessary |
| Generalized Chronic Wrist Pain² | Persisting pain without structural explanation | Adolescents often girls between the ages of 13 and 16. No history of specific trauma but sometimes a history of heavy participation in grip intensive sports, such as racquet sports or fencing | • Vague, chronic, activity-related wrist pain – Ligamentous laxity is a common finding
• Other physical findings are usually nonspecific. | • Radiographs and MRI are typically normal.
• TFCC injury
• Intersection syndrome
• Gymnast wrist
• Dorsal Carpal Impingement | • Formal hand therapy focusing on grip strengthening (isometric wrist flexor/extensor strengthening) without wrist isokinetic or range-of-motion exercises is effective at reducing or eliminating the pain in most patients. |

WRIST

Osteochondritis Dissecans of elbow²

Adolescent athletes especially male basketball players and female gymnasts

Repetitive lateral compression across the radiocapitellar joint

Clinical Features

Radiological Features

Differential Diagnosis

Management

Panner’s disease²

Younger children aged 4-8.

Lateral compression forces across the radiocapitellar joint during vulnerable periods of growth can contribute but the actual aetiology is unclear

Clinical Features

Radiological Features

Dorsal Carpal Impingement

Management

Osteochondrosis of the capitellum with avascular necrosis of the ossific nucleus of the capitellum.

Clinical Features

Radiological Features

Dorsal Carpal Impingement

Management

Medial Distraction Injury² (insertion injury)

Male baseball players and female gymnasts particularly vulnerable

Repetitive overuse distraction injury to the medial epicondyle apophysis

Acute valgus stress

Clinical Features

Radiological Features

Dorsal Carpal Impingement

Management

Valgus extension overload injury

Throwing athletes. Olecranon apophysis is unique to the paediatric elbow

Shear stresses across the posterior compartment during the deceleration phase of throwing

Clinical Features

Radiological Features

Dorsal Carpal Impingement

Management

UCL injury

Clinical Features

Radiological Features

Dorsal Carpal Impingement

Management

RICE treatment, anti-inflammatory medication, Activity modification with graduated return to sport

For children active in sports that involve high distraction forces on the medial elbow anatomic reduction and fixation is sometimes considered

Posterior fossa syndrome

Clinical Features

Radiological Features

Dorsal Carpal Impingement

Management

Rest and activity modification with gradual return to throwing

Surgical intervention for removal of loose bodies and osteophytes

For olecranon apophysis treatment is mainly rest and immobilisation. Delayed or non-union may require surgical fusion
<table>
<thead>
<tr>
<th>Condition</th>
<th>Pathology</th>
<th>Population affected</th>
<th>Mechanism of onset</th>
<th>Clinical Features</th>
<th>Radiological Features</th>
<th>Differential Diagnosis</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial Distraction Injury (UCL)</td>
<td>Ulnar collateral ligament injury</td>
<td>Normally in high level skeletally mature throwing athletes (javelin, football quarterback, baseball pitcher). Increased incidence</td>
<td>Atritional – chronic micro trauma to the UCL complex producing micro tears Catastrophic – acute UCL rupture during acute valgus stress</td>
<td>• Attrition al: insidious onset of discomfort over the UCL often associated with throwing. Often recurs with return to throwing even after sustained rest • Catastrophic: A distinct “pop” and immediate pain over the UCL</td>
<td>MRI to view UCL tear or changes</td>
<td>• Medial epicondyle apophysitis or avulsion • flexor pronator tendinosis • ulnar neuritis</td>
<td>• Attritional: Rest • Gradual return to sport including an interval throwing program • Acute rupture with UCL insufficiency: (if skeletally mature) UCL reconstruction using a free tendon graft • Reconstruction only considered in the skeletally immature if 6 months of rest and conservative treatment fails</td>
</tr>
<tr>
<td>Slipped upper femoral epiphysis (SUFU)</td>
<td>Displacement of the upper femoral epiphysis from the metaphysis through the physis</td>
<td>Children</td>
<td>Can be a result of trauma or from accelerated growth spurt. Often the cause is not identified.</td>
<td>• Reduced hip range of motion especially internal rotation • Hip, thigh or knee pain • Gait abnormality – limp or leg held in external rotation</td>
<td>X-ray with lateral or AP views of the hip</td>
<td>Groin strain • Hip sprain • Knee sprain</td>
<td>Surgical management • On diagnosis the child is made non weight bearing and an urgent referral is made to an orthopaedic specialist</td>
</tr>
<tr>
<td>Legg-Calvé-Perthes Disease (Hip pain)</td>
<td>Partial interruption of the blood supply to the immature femoral head</td>
<td>4-8 years of age. Boys are 4-5 times more likely to be affected than girls</td>
<td>Increased incidence with low birth weight, abnormal birth presentation, family history, higher birth order and lower socioeconomic status.</td>
<td>• Hip pain • Traumatic limp • Referred knee pain • Limited hip abduction, internal rotation • Leg length discrepancies</td>
<td>Anteroposterior and frog-leg lateral x-rays demonstrate varying degrees of fragmentation, flattening, sclerosis of the proximal femur growth centre with joint space widening.</td>
<td>Septic arthritis • Osteomyelitis</td>
<td>Physical therapy • Bracing • Surgical reconstruction to improve hip joint congruity.</td>
</tr>
<tr>
<td>Osgood-Schlatter Disease (Knee pain)</td>
<td>Repetitive traction of the patellar tendon on the tibial tubercle ossification centre or apophysis</td>
<td>Between 10-14 years of age</td>
<td>Jumping activities and direct pressure, such as kneeling</td>
<td>• Moderate to severe tenderness, swelling and prominence over the tibial tubercle.</td>
<td>Anterior soft tissue swelling and fragmentation of the tibial tubercle with plain x-rays</td>
<td>Fractures • Tumours • Osteomyelitis</td>
<td>Activity modification • NSAIDs or acetaminophen • Stretching and physical therapy to improve flexibility of lower-extremity muscles • Surgery for mature skeletons who continue to have disabling symptoms</td>
</tr>
<tr>
<td>Sinding-Larsen-Johansson Disease (Knee pain)</td>
<td>Inferior pole of patella ossification or apophysis</td>
<td>10-13 years of age</td>
<td>Jumping or direct pressure over the inferior pole of the patella</td>
<td>• Point tenderness is localized to the inferior pole of the patella</td>
<td>Soft tissue swelling and calcification of an avulsed portion of the patella on plain x-ray</td>
<td>• Activity modification • NSAIDs or acetaminophen • Stretching to improve flexibility of the hamstrings, quadriceps and heel cords • Knee immobilisation in severe cases</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>Pathology</td>
<td>Population affected</td>
<td>Mechanism of onset</td>
<td>Clinical Features</td>
<td>Radiological Features</td>
<td>Differential Diagnosis</td>
<td>Management</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FOOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Severs Disease¹ (Heel pain) | Calcaneal apophysitis | Physically active children | Physical activity/ sport e.g soccer | • Symptoms worse at beginning of season or during growth spurt
• Aggravated by running
• Point tenderness at Achilles tendon insertion | • Plain x-rays often normal. | • Achilles tendinopathy
• Plantar fasciitis
• Calcaneal stress fracture | • Activity and shoe modification
• Padded heel cups
• Calf stretches may help (but may also aggravate). |
| Freiberg Disease² (Forefoot pain) | Disordered ossification of the second metatarsal head | Adolescent girls who participate in ballet and dance | Trauma
Repetitive stress
Weight-bearing Athletic activities | • Point tenderness and swelling over the affected metatarsal heads | • Sclerosis and varying degrees of flattening of the affected articular surface on plain x-ray | • Activity modification
• Metatarsal pads
• Well-padded shoes |
| Köhlers Bone Disease³ (Foot pain) | Osteochondrosis of the navicular bone | 2-8 years of age
Boys are 3-5 times more likely to be affected | Athletic activities | • Mid foot pain
• Limp
• Point tenderness over the navicular
• Mild swelling and warmth over the dorsal midfoot | • Navicular sclerosis, flattening and fragmentation | • Self-limited condition but short leg casts for up to 8 weeks accelerates resolution |
| **SPINE** | | | | | | | |
| Scheuermann's Disease⁴ (Back pain) | Disturbance of the vertebral body wedging resulting in kyphosis during a growth spurt | Between 10 and 12 years | | • Back pain
• Increasing back deformity
• Rigid, humpback deformity that does not correct with back extension | • AP and lateral x-rays with the patient standing reveal at least 5 degrees of wedging in at least three adjacent vertebrae
• Disk space narrowing
• End plate irregularities
• Scoliosis | • Postural round-back | • Surgical intervention only for patients with mature skeletons who have a curve greater than 75 degrees, pain, rigid deformity and an unacceptable appearance
• Bracing for the patient with an immature skeleton with an increasing curve |

ABBREVIATIONS: FOOSH, fall on outstretched hand; ORIF, open-reduction internal fixation; TFCC, triangular fibrocartilage complex; MRI, magnetic resonance imaging; OCD, osteochondritis dissecans; AP, anterio-posterior; UCL, ulnar collateral ligament; NSAIDs, non-steroidal anti-inflammatory drugs.

REFERENCES